Magnetic islands & flux ropes

Miljenko Čemeljić

& W. Kluźniak, R. Mishra, F. Kayanikhoo,

A. Kotek

Nicolaus Copernicus Astronomical Center, PAN Warsaw

ASIAA Visiting Scholar, Taipei, Taiwan, collaboration with H. Shang

SHAO Visiting Scientist (PIFI), CAS, Shanghai, China (Jan-Aug 2020), collaboration with Feng Yuan & Hai Yang

Outline of 2020

- Chinese 8 months: General Relativity MHD Athena++ simulations in 3D; lectures "Introduction to PLUTO code"
- Two long-term projects finished (with simulations using the PLUTO code)
- Students' year

Athena++ code, GRMHD simulations, initial conditions

 Table 1. Parameters used in different cases in our simulations.

_	Model	a	β_{min}	N_r	N_{θ}	N_{ϕ}	Duration
	SANE00	0	0.05833	288	128	64	40000
	MAD00	0	0.1	288	128	64	40000
	SANE98	0.98	0.03	352	128	64	40000
	MAD98	0.98	0.1	352	128	64	40000
-							
_							
ð							
ğ							
0							

Fig. 1. Density in a logarithmic colour grading and a poloidal magnetic field contained inside the torus around a black hole in our SANE setup. Loops of poloidal magnetic field are shown with solid lines, with arrows showing the clockwise and counter-clockwise direction of the initial loops of magnetic field.

Motion of magnetic islands in SANE00 case

Time

-Snapshots at three different times in our simulation, showing density in logarithmic colour grading, overplot with poloidal magnetic field lines, with arrows showing the direction of the poloidal magnetic field. The dotted black and red lines are r = const lines passing through thecenters of two magnetic islands. We describe the magnetic islands motion by tracing the positions of their centres. A star mark in the left panel denotes a magnetic island above the equatorial plane.

-Time dependence of the positions of the magnetic islands above (red) and below (black) the equatorial plane of the accretion flow shown in Fig. 3. The dashed lines are least square fits, slopes of which are about 0.01 and 0.03 for the red and blue lines, respectively.

Spiraling-out of the flux ropes

•Magnetic islands are slices at different times crossing the middle of the flux rope in our simulation (left panel). The distance from the origin is increasing in time. The angle φ of the colatitudinal plane in which the middle of the flux rope is positioned, is also increasing with time and given in the figure. The flux rope is spiraling away from the black hole, as shown in the 3D schematic plot (right panel) depicting the trajectory of its center.

Ejection of the flux ropes

•Slices at different azimuthal planes at times T=20000 and T=40000, during the ejection of the flux rope in the corona. We describe the motion of the flux ropes by following the positions of their centers in such slices.

Ejection of the flux ropes

•*Top panel*: The distribution of the poloidal magnetic field strength in the φ – z plane with a constant cylindrical radius r cyl above the equatorial plane at T = 18500 rg/c. A star mark corresponds to the position of the magnetic island from Fig. 3 at the same time. We trace the minima of the poloidal magnetic field, showing a slice through the azimuthal extensions of the magnetic islands—which would be seen as flux ropes. Parts of the arcs of the flux ropes lie in this plane. *Bottom panel*: Distribution of density in the same φ – z plane. A local increase of density, by an order of magnitude, along the flux rope profile corresponds to the positions of minimum Bp in the azimuthal direction. Flux ropes are visible in both panels.

Motion of the reconnection layers

•Reconnection layers are clearly visible in the snapshot at T=19500 in our simulation along the disk boundary, where the flux rope emerges. In the left panel are shown the poloidal magnetic field lines with density in logarithmic colour grading as a background, and in the right panel the background is plasma β . With red and black dotted lines are shown the coordinate lines, along which we compute the physical quantities.

Completing long time projects

1	2021MNRAS.500506V	2021/01	Ē	≔	
	Inner dusty regions of pr and disc winds Vinković, Dejan; Čemeljić,	rotoplanetary discs - II. Dust dynamics dr Miljenko	iven by	radiat	ion pressure
2	2020arXiv201213194M Backflow in simulated M	2020/12 HD accretion disks		≔	
3 🔲	2020arXiv201200916C Flux ropes in SANE disk Čemelijć, Miljenko: Yuan	2020/12 SEPRICE Yang Hai		⊨	
4	2020past.conf275K Asymmetric Jet launchin Kotek. Aleksandra: Čemel	2020/10 g iić. Milienko: Kluźniak. Włodek <i>and 1 more</i>		≔	
5 🗆	2020past.conf204J Towards pseudo-Newtor Jabłoński, Maciej; Kotek,	2020/10 nian black hole jets: comparison of forces Aleksandra: Čemelijć, Miljenko and 1 more		I	
6	2020past.conf177J Transport of dust grain p Jaros, Robert; Čemeljić, N	2020/10 cited: 1 particles in the accretion disk /iljenko; Kluźniak, Włodek and 2 more		Ħ	
7	2020past.conf147M Backflow in Accretion Di Mishra, Ruchi; Čemeljić, M	2020/10 cited: 3 sk /iljenko; Kluźniak, Włodek		≔	
8	2020past.conf58T The tool DUSTER for co Turski Cezary: Jaros Rol	2020/10 omputation of dust trajectories in a protop	lanetar	i⊟ y disk	
9 🔲	2020MNRAS.491.1057C Light-curve variation cau Čemeljić, Miljenko; Siwak.	2020/01 Ised by accretion column switching stella Michał	r hemis	i≡ spheres	9

Students' year

1 🔲	2021MNRAS.500506V	2021/01		:		
	Inner dusty regions of pro and disc winds	otoplanetary discs - II. Dust dynamics of	driven by	/ radia	tion pressure	
	Vinković, Dejan; Čemeljić,	Miljenko				
2	2020arXiv201213194M	2020/12		∷≡		
_	Backflow in simulated MI	ID accretion disks				
- E	Mishra, Ruchi; Čemeljić, M	iljenko; Kluźniak, Wlodek				
3	2020arXiv201200916C	2020/12		≔		
	Flux ropes in SANE disks	s				
	Čemeljić, Miljenko; Yuan, F	eng; Yang, Hai				
4	2020past.conf275K	2020/10		≔		
	Asymmetric Jet launching]				
	Kotek, Aleksandra; Čemelji	ć, Miljenko; Kluźniak, Włodek and 1 mor	e			
5	2020past.conf204J	2020/10		≔		
	Towards pseudo-Newton	an black hole jets: comparison of force	es			
	Jabłoński, Maciej; Kotek, A	leksandra; Čemeljić, Miljenko and 1 more	Э			
6 🗌	2020past.conf177J	2020/10 cited: 1		≔		
	Transport of dust grain particles in the accretion disk					
	Jaros, Robert; Čemeljić, M	iljenko; Kluźniak, Włodek and 2 more				
7	2020past.conf147M	2020/10 cited: 3		≔		
	Backflow in Accretion Disk					
	Mishra, Ruchi; Čemeljić, Miljenko; Kluźniak, Włodek					
8	2020past.conf58T	2020/10		≔		
	The tool DUSTER for con	mputation of dust trajectories in a proto	planetar	y disk		
	Turski, Cezary; Jaros, Rob	ert; Čemeljić, Miljenko and 3 more				
9 🔲	2020MNRAS.491.1057C	2020/01		≔		
	Light-curve variation cause	sed by accretion column switching stel	lar hemis	sphere	S	
	Čemeljić, Miljenko; Siwak,	Michał			Milienko Če	

iljenko Čemeljić, 2020 CAMK Annual Meeting, Jan 2021

Thank you!

