
JETSET codes tests.
Magnetic diffusivity

Miljenko Cemeljic

TIARA (ASIAA, NTHU Hsinchu)

Colloquium in NCU, Nov. 02, 2007



• Introduction
• JETSET collaboration
• Test suites, “standard” tests
• Code tests beyond ''standard''
• Resistive MHD test
• Prospects

Outline



• Astrophysical media stretch use of codes:
multicomponent, large gradients, viscosity,
resistivity, chemistry included

• Few exact solutions, numerical solutions
dependent on: numerical approximations,
choice of i.c. and b.c. (initial conditions and
boundary conditions)
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• Observations, more
and more detailed,
on various scales,
put severe
constraints to
models and
simulations.

• M-87, black hole
powered jet of
electrons and sub-
atomic particles
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• Laboratory
experiments also
illustrate how
unusual, compared
to everyday
exeprience,
astrophysical
plasmas are.

• Here Z-pinch wire
array, most
powerful lab X-ray
source.
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• PRECISE
observations, and
more precise to
come

• HST; HH30
observations
1995-2000
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• What we can
simulate today?

• New codes, more
powerful machines,
we do our best!

• Machines versus
codes:
-faster machines, full
3D, larger comp.
boxes
-new numerical
methods, “brutal
force” in computing
AND innovations
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• SuperHiperMegaGiga
computer (“Deep
Thought” ref.:Douglas
Adams “The
Hitchhiker's Guide to
the Galaxy”) or shared
computing (your
work/home desktop?
Laptop?)
– dedicated linux

cluster
– Grid technology

(similar to SETI
idea)

Introduction







• Set of equations
– ρ (density)
– ρu (momentum)
– ρe (energy)
– B (magnetic field)
– p (pressure)Numerical schemes (discretizations)

Introduction-Numerical solutions

Numerical schemes differ in addressing the contact
and shock discontinuities in the flow
 overall accuracy depends on the way these problems

are solved
 finite differences, finite volume and finite elements

method



• Use of neighbouring points:
approximation of the derivative of an
unknown quantity U at a grid point by the
ratio of the difference in U at two adjacent
points to the distance between the grid
points.
– mostly on regular mesh

Introduction-Finite differences method



• The variables are approximated by their
average values in each volume, and the
changes through the surfaces of each
volume are approximated as a function of
the variables in neighbouring volumes.
– on both regular and irregular mesh

Introduction-Finite volume method



• Also splits up the spaces into small pieces
(called elements) as in finite volume
method. But now a grid point exchanges
the information with all the other grid
points with which it shares an element.
– no advantage of regular mesh

• All this possible in AMR (adaptive
mesh refinement) approach

Introduction-Finite elements method



• Marie Curie RTN (Research and Training
Network)

• December 2006, Dublin, initial workshop
• January 2007, final list of tests
• Up to end of 2007, webpage with posted

tests and conditions for passing it

JETSET collaboration tests



• Example of “test suite”: problems which test a code
thoroughly, all of the terms in equations. Each problem
tests different MHD phenomenon, e.g. Stone et al. (1992):

• 1)Eulerian advection: tests advection of magnetic fluid

• 2)MHD Riemann problem:propagation of nonlinear
compressive waves (shocks) and contact discontinuities

• 3)propagation of Alfven waves: propagation of
noncompressive transverse waves

• 4)1.5D evolution of a stationary flow: overall dynamics

• 5)fully 2.5D dynamical problem with shocks: overall
dynamics

Test suites



Test suites: Eulerian advection

Advection of a square pulse of transverse mag. field originally
50 zones wide a distance of 5 times its width. Donor cell, van
Leer and PPA interpolation methods. Analytic locations of field
discontinuity are at 0.4 and 0.6



Test suites: Eulerian advection

Current density for the square field pulse
computations. Analytic
solution is delta function at x=0.4. PPA,
van Leer and donor cell
give increasingly broader solutions.

Error for advection test, as a function of
spatial location x. PPA, van Leer and
donor cell give increasingly larger error.



Test suites: MHD Riemann problem-shock capturing methods

– Classical
 linear numerical dissipation terms
 the same dissipation at all grid points
 for smooth and weak-shock solutions
 symmetric or central discretization
 no info used about wave propagation

– and modern method
 non-linear numerical dissipation
 feedback for adjusting of dissipation
 every cell adjusted
 based on “upwind differences” (PDEs solutions dependent

on velocity sign)
– intermediate method
 linear numerical dissipation terms, non-linear switch

functions



Test suites: MHD Riemann problem

– in HD-the simplest initial value
problem
 discontinuous data
 two separated constant states
 breakup of discontinuity
 two types of waves:
 shocks and rarefactions
 contact discontinuity

(moving)



Test suites: MHD Riemann problem-Godunov type schemes
Godunov (1959) exact Riemann

solver
-solving of a separate Riemann

problems
-solving at each cell boundary

– Three steps (U=1,v,e):
 reconstruction of ρU(x) from

cell ρU-es
 solving of Riemann problems

for Δt
 computing the fluxes across

cell boundaries and averaging
of ρU(x)-es to obtain ρU-
es

– Useful method, but in original
form too diffusive



Test suites: Riemann problem-Riemann solvers
– What is usually used is combination of Godunov's concept with high-order

reconstruction (solution averaging):

 Van Leer (1979): MUSCL (Monotone Upwind Schemes for
Scalar Conservation Laws)-linear reconstruction:
approximation of piecewise-linear Riemann problems by
piecewise-constant Riemann problems including slope-
limiter, solution of the Lagrange equations and Eulerian
remapping.
 Colella & Woodward (1984): PPM (Piecewise Parabolic

Method): piecewise parabolic reconstruction via primitive
functions, contact steepening.
 Approximate (linearized) Riemann solvers may serve as well

in splitting the flow into waves with different characteristic
velocities and upwind directions.



Test suites: MHD Riemann problem-alternatives
– (Approximate) Riemann solvers account for upwinding and shock

capturing but:
 involved computations, costly in CPU time

– Alternatives-simpler-make use of:
 von Neumann-Richtmyer viscosity
 Runge-Kutta steps
 operator-splitting of advection and pressure terms

– Other Riemann solvers:
 Approximate Riemann Solver of Roe (1981)-solves exactly a

linearised problem (by an algorithm by Roe), instead of
looking for an iterative solution of the exact original Riemann
problem
 Harten-Lax-van Leer-Einfeldt (or HLLE) scheme (1988)-the

energy of a flow is highly kinetic



Test suites: MHD Riemann problem

1D fully dynamical problem. Type of it is
often referred “shock tube problem”, Sod
(1978), which is “standard” test in HD. In
MHD: Brio & Wu (1988) magnetic
Riemann problem, demonstrates
nonconvexity of the MHD eqs.
It tests the ability of num.
scheme tosolve shocks,
rarefactions and waves in
MHD flows.

Here is pressure profile,
magnetic field is similar.



Test suites: Propagation of Alfven waves

These waves are unique to MHD.
As a test: comparison with analytical
solutions for the magnetic braking of an
aligned rotator (Mouschovias &
Paleologou, 1980)
Physically: time evolution of a rotating cylinder
of dense gas, embedded in a homogeneous
ambient medium and threaded by a uniform axial
magnetic field. The shear at the disk surface
generates A. waves which propagate along the
meg. field lines into the amb. medium
(accelerating it) and disk (decelerating it).
Rotational velocity v_ φ and B_φ are compared
with analytical solution.



Test suites: 1.5D evolution of stationary flow

Steady 1D magnetized wind solution; Weber
& Davis (1967) [assumes B_p geometry
purely radial]. 2D solutions by Sakurai
(1985).
Solution can be exploited
multiple ways.
1)set complete analytical solution
in the grid and compare

evolution of it with the
initial state=direct measure
of the truncation error.

Single timestep is enough!
Also, setup of inflow b.c.

and its evolution to stationary
state, and then comparison with
analytical solution, is possible.



Test suites: 2.5D evolution of flow with shocks

Solar coronal transients (Low, 1984)
-violent expulsion of hot magnetized
bubble into a spherically symmetric
nonmagnetic ambient.

Run of analytic (time dependent)
solution is set, and evolution followed.
Direct comparison is used to compute
errors. These are then showed, and
analyzed.

Top panel are density isocontours
(solid) and poloidal mag. field lines
(dashed), bottom panel are isocontours
of B_φ. Times shown are 0.874,1,75
and 2.62 x10^4 sec.



Test suites: 2.5D evolution of flow with shocks

Error analysis. Relative errors in
the density (0.98%), radial
velocity (0.98%), radial magnetic
field (2.6%) and toroidal
magnetic field (2.1%).



• Advection of a current-carrying cylinder
• Orszag-Tang Vortex
• MHD Kelvin-Helmholtz Instability
• Under-expanded Jet
• Double Mach Reflection of a Strong Shock
• Oscillatory Instability of Radiative Shocks
• -Magnetic Blast Wave propagation
• -Cloud-Shock Interaction
• Magnetic diffusion

JETSET tests



Advection of a current-carrying
cylinder
• introduced by deVore 1991, tests

divB=0

• 2D, cartesian, (x,y)=(200,100)pts

• initial setup:

• Evaluation:
-exact solution known
-images



Advection ...



2D compressible MHD vortex of
Orszag & Tang

– by O&T 1979, test if code can
handle shocks in two
dimensions, also divB=0 test.

– initial conditions vary in
literature, here we set:

– no analytical solution,
qualitative comparison of 2D
plots and 1D cuts of density,
vorticity (rot v) , compressibility
(div v), divB, temperature,
thermal and magnetic pressure,
with other solutions. Different
divB=0 schemes produce
slightly different results.



Orszag & Tang



Orszag & Tang



MHD Kevin-Helmholtz
instability

– based on Miura & Pritchett
(1982) results, introduced by
Keppens et al. (1999); test
verifies the general behavior of
KH instability in a magnetized
plasma, and checks if code can
reproduce correctly the linear
phase of instability.

– Initial conditions: Bx=Bo,
By=0, take care of b.c., take care
about “outflow” b.c.

– Evaluation:
-growth rates -
general behavior



MHD KH



MHD KH....



Under-expanded jet
– Mignone, 2007; comparison

with laboratory
experiment

– injecting gas at p_0
through a nozzle
into chamber
under low
pressure p_c
(shock!)

– empirical
expression:



Under-expanded jet



Under-expanded jet



Double Mach reflection of a
strong shock

– Woodward & Colella (1984),
test for reflection
of a planar shock
under an angle π/3
with a reflecting
wall.



Oscillatory instability in radiative
shocks– Mignone, 2005; steady state
solution used as initial condition,
and boundary-induced
oscillations perturb the shock.
Test for the energy budget of the
system-reproducing the expected
oscillations of the shock.

– 1D cartesian grid, HD equations
+cooling. Nontrivial post-shock
state. Also some compromises in
the setup, for simplicity.

– Evaluation: 1)position of the
shock, 2)power spectrum of the
shock with peak at fundamental
mode



Oscillatory instability...



Magnetic diffusion test

• Disk as a boundary condition
– Ideal MHD, Ouyed & Pudritz,

1997

• Time-dependent resistive
MHD simulations-ZEUS347,
open field threading the disk,
Fendt & Cemeljic, 2002

• Test setup:
ZxR=(500x200)grid
cells=(80x20)R_i

• Slower propagation of
resistive jet



Equations of resistive MHD

• Magnetic diffusivity η



With polytropic approximation

• Result: Slower propagation of resistive jet
• But: Irreversible processes forbidden in polytropic approach = shock

forming prevented



Energy equation solved

• Slower propagation of resistive jet
• Caveat: some features might be boundary-condition dependent
• RESULTS:
• 1) Threshold of numerical resistivity η=0.001
• 2) Difference in the jet front shock position: ΔZ=2.5 Z/R_i



Physics or “art”



Physics or “art”



Prospects

• Webpage with the test setups and descriptions
• Test results
• Information about results obtained by each code
• Referees of the papers on new codes demand the

particular tests to be performed


