

## IAA Lunch Talk

# **Simulations of jets, revisited**

# Miljenko Čemeljić 席門傑

ASIAA/TIARA, Taiwan, November 23, 2009

### Outline

- -Introduction
- -Setup of simulations, magnetospheric interaction
- -Results for various Prandtl numbers
- -Problem in simulations with Pr<=1
- -Recent solution: Pr~>1

### Introduction

Why jets *revisited*?

- -development of jet model:stellar wind, disk wind, reinstating the stellar wind in addition to disk wind.
- -Main problem in simulations for years: no strong outflow
- -Recent (2009) development: outflow overseen?
- -Results with Pr~>1 show more possibilities

#### **Resistive MHD equations**

- -in addition to physical resistivity, hydrostatic, viscous dissipation term could be added-but we investigate effects of resistivity, so we mimic viscosity with von Neumann-Richtmyer artificial viscosity, which is significant only for part of the flow with shocksgood for relaxation phase
- -We measure the effect by the magnetic Prandtl number,Pr=viscosity/resistivity. Two important regimes, when Pr<1 or Pr>1.
- Positioning of Rcor also important, for Rcor>Ri and Rcor<Ri results are different.
- -Animation of our results for typical simulations with Pr~1 and Rcor>Ri

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \quad (1)$$

$$\rho \left[ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right] + \nabla p + \rho \nabla \Phi - \frac{\mathbf{j} \times \mathbf{B}}{c} = 0 \quad (2)$$

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times \left( \mathbf{v} \times \mathbf{B} - \frac{4\pi}{c} \eta \mathbf{j} \right) = 0 \quad (3)$$

$$\rho \left[ \frac{\partial e}{\partial t} + (\mathbf{v} \cdot \nabla) e \right] + p(\nabla \cdot \mathbf{v}) = 0 \quad (4)$$

$$\mathbf{j} = \frac{c}{4\pi} \nabla \times \mathbf{B} \quad (5)$$



#### **Results of our simulations**

We find four characteristic stages, which appear in every (resistive) simulation-also in ideal MHD, because of numerical resistivity. 1) Initial relaxation with pinching of B, 2) Inflation & reconnection with opening of B, 3) Retraction of disk with transient flows onto central object, 4) Terminal quasi-equilibrium. These stages, all or some of them, can repeat periodically, depending on parameters.









#### **Problem: no outflows**

-What are we doing here? Where is jet?



#### Romanova et al. last 10 years

-Weak propeller, disk accretion to a fast rotating star. Matter flow in the "propeller" regime for a star rotating at Omega\_\*=0.5 Omega\_K\*, smaller accretion rate, viscosity smaller a\_vis=0.1, diffusivity a\_dif<1; not enough interaction between magnetosphere & disk.

-Strong propeller regime, fast rotating star, quasi-periodic accretion and outflows in propeller regime. Larger accretion rate and viscosity: a\_vis=0.3, a\_dif=0.2. Color background shows density, lines are magnetic field lines. Evolution is shown for time interval from 800 to 1000 rotations. Time is measured in units of Keplerian rotation at R=1.

-Long lasting outflows in the form of conical winds. Enhanced accretion, inward transport of matter in the disk is faster than outward diffusion of magnetic flux (Pr>1, a\_vis>a\_dif).



#### **Mass fluxes for different Rcor and Pr**



Fig. 4.— In snapshots at T=160 and T=140 shown is the mass flux  $\rho_v$  in logarithmic color grading for our typical case with  $R_{cor} > R_i$  in the *left* panel, and for the case with  $R_{cor} < R_i$  in the *right* panel.



Fig. 11.— The mass flux  $\rho v$  in logarithmic color grading for cases with Pr> 1, with  $R_{cor} > R_i$  in the *left* panel, and for the case with  $R_{cor} < R_i$  and  $B_* = 50$  Gauss in the *right* panel. The axial outflow vanishes for slow rotating star, and for faster rotating star it is present.

#### Summary

-Numerical simulations of magnetospheric outflows
-Ideal MHD ver. resistive and viscous MHD
-Importance of magnetic Prandtl number Pr
-Problem in simulations with Pr<=1, no outflows</li>
-For Pr~1 or Pr>1 magnetospheric outflows present

