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W lodzimierz Kluźniak and David Kita

Physics Department, University of Wisconsin, Madison, WI 53706, USA

ABSTRACT

An analytic solution is presented to the three-dimensional problem of steady

axisymmetric fluid flow through an accretion disk. The solution has been obtained

through a systematic expansion in the small parameter ǫ = H̄/R̄ (the ratio of disk

thickness to its radial dimension) of the equations of viscous hydrodynamics. The

equation of state was assumed to be polytropic. For all values α < 0.685 of the

viscosity parameter, we find significant backflow in the midplane of the disk occuring

at all radii larger than a certain value; however, in the inner regions of the disk the

fluid always flows toward the accreting object. The region of backflow is separated

from the region of inflow by a surface flaring outwards from a circular locus of

stagnation points situated in the midplane of the disk.

1. Introduction

Accretion flows occur in a variety of astrophysical situations, often they take the

form of a disk (e.g., Frank, King & Raine 1992). The first solutions for accretion

disk flows were constructed numerically by Prendergast & Burbidge (1968), while the

first analytic solutions were obtained by Shakura & Sunyaev (1973). Since then, it

has been the custom in analytic, but frequently also in numerical, work to discuss

essentially one-dimensional solutions, i.e. to obtain the radial structure of the disk by

considering equations averaged over the thickness of the disk and only then to obtain

an approximate “vertical” structure by separately considering equations describing
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hydrostatic equilibrium (and possibly radiation transfer) in the direction perpendicular

to the plane of the disk. This is also true in discussions of quasi-spherical flows, such as

in the celebrated accretion-dominated flows (ADF) (e.g Narayan 1996 and references

therein)1.

As already shown by Urpin (1984) in a remarkable paper, consideration of the

vertical gradients of the stress tensor leads to a solution in which the flow direction in

the midplane of the disk is opposite to that in the subsurface layers. The flow cannot

be properly described by its height-averaged value, a point dramatically evident in

the numerical work of Kley & Lin 1992 who enforced spurious circulation flows in the

meridional plane by adopting “height-averaged” boundary conditions at the edges

of their computational domain (nevertheless, they found and correctly identified

an outflow in the disk midplane, reminiscent of Urpin’s solution). Several recent

numerical calculations (e.g. Różyczka, Bodenheimer & Bell 1994; Igumenshchev,

Chen and Abramowicz 1995) also exhibit flows which can best be described in terms

of a tendency for backflow to occur in the midplane of the disk. We believe this

effect is not thermal in origin, and to investigate the dynamics of the phenomenon we

solve analytically the three-dimensional equations of disk accretion using a polytropic

equation of state for the fluid.

Urpin (1984) included thermal effects but made the simplification of zero net

angular momentum flow in the disk (equivalently, his self-similar solution is valid

asymptotically for large radii). In our work we chose the opposite route—we neglect

1In an important contribution Narayan & Yi 1995 go beyond the one-dimensional

solutions by numerically constructing axisymmetric ADF solutions which factorize the

three-dimensional equations, i.e., solutions of the type f(r, θ) = R(r)Θ(θ). However,

the solutions we present in this paper are not factorizable.
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thermal effects, but include the inner boundary condition—this allows us to exhibit

the global character of the solution. In particular, we show how the backflow is fed by

the inflowing fluid. In Section 2 we present the equations, in Section 3 we solve them.

A discussion of the results is begun in Section 4 and concluded, in Section 5, with a

detailed presentation of the velocity field in the disk.

1. Disk equations.

1.1. Assumptions.

We use cylindrical coordinates (r, φ, z) centered on the accreting object and make

the following standard assumptions:

(i) the gravitational force on a fluid element is characterized by the Newtonian

potential of a point mass,

ψ(r, z) = − GM∗√
r2 + z2

, (1.1)

with G the gravitational constant and M∗ the mass of the central star;

(ii) the structure of the disk is symmetric under reflection about the (z = 0)

midplane;

(iii) the disk is in a steady state (∂/∂t = 0);

(iv) the disk is axisymmetric (∂/∂φ = 0), hence all quantities will be expressed in

terms of the coordinates (r, z);

(v) |vφ| ≫ |vr|;
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(vi) The disk is geometrically thin, i.e. |z| ≪ r;

(vii) Viscous torques are a small perturbation in the radial (r) and vertical (z)

components of the equations of motion.

Assumption i) implies also that the disk is not self-gravitating. The assumptions

iii)–v) are consistent with the statement that the accretion time scale is much greater

than the Keplerian period. Assumption vi) implies that the rotational velocity is

much greater than the local sound speed in the outer parts of the disk, vφ ≫ cs, and

that the radial velocity is larger than the vertical one, |vr| ≥ |vz|. Assumptions v)-vii)

taken together signify that the disk is approximately in hydrostatic equilibrium.

Throughout this paper we will also assume that

viii) the equation of state for the disk is that of a polytrope, i.e.

P = Kρ1+1/n, (1.2)

with n and K constant. Except in the Appendix we will take the polytropic index to

be n = 3/2.

For the inner boundary condition, we take vanishing of the viscous torque at

some radius rm, corresponding to a maximum of the angular frequency, Ωm, at

the same radius. This boundary condition, which introduces into the problem a

natural lengthscale, r+ = Ω2
mr

4
m/(GM∗), is appropriate for black-hole disks and for

stellar accretion disks about stars which are spinning-up (whether magnetized or

not). For stars which are not spinning up, i.e. ones which transfer their angular

momentum to the disk (such as non-magnetized stars rotating close to the equatorial

mass-shedding limit and, possibly, for X-ray pulsars [accreting neutron stars] in

their spin-down phase), the solution presented below is valid with the substitution

1 −
√

r+/r → 1 +
√

r+/r. Thus, our solution is universally valid for any thin,
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Keplerian accretion disk described by a polytropic equation of state. We expect that

the qualitative features of our solution for the accretion flow will hold also for other

equations of state.

If the polytropic disk were in exact hydrostatic equilibrium, the angular frequency

Ω = vφ/r would be constant on cylinders and it would be very easy to solve the

equations of motion, at least far from the inner boundary. In reality, viscous terms

(which are of order α2 in the alpha disk) break the hydrostatic equilibrium and cause

the equations of motion to form a system of nonlinear, coupled, second order partial

differential equations which are rather challenging to solve (even numerically), but

which bring the reward of a solution whose salient features cannot be described by

height-integrated, i.e. ordinary, differential equations.

1.2. Equations of motion.

We use the generalized Navier Stokes equations, along with the equation of

continuity, to describe the accretion flow and to represent viscous interactions:

ρ
d~V

dt
+ ρ(~V · ~∇)~V = −~∇P − ρ~∇ψ + ~∇ · σ, (1.3)

∂ρ

∂t
+ ~∇ · (ρ~V ) = 0, (1.4)

where ρ is mass density, P is pressure, ~V is the velocity vector of a fluid element, and

ψ is the gravitational potential. The rank two viscous stress tensor, σ, is assumed to

have the following Cartesian components (Landau & Lifshitz 1959):

σjk = η

[

∂Vj

∂xk

+
∂Vk

∂xj

− 2

3
δjk ~∇ · ~V

]

+ ξδjk~∇ · ~V , (1.5)

where ξ is bulk viscosity and η = νρ is the dynamic viscosity coefficient, both of which

are functions of the coordinates.
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With the assumptions described in § 1.1, the equations of motion in cylindrical

coordinates become

vr
∂vr

∂r
+ vz

∂vr

∂z
− Ω2r = −∂ψ

∂r
− 1

ρ

∂P

∂r
+

1

ρ
Fr, (1.6)

ρ
vr

r2

∂

∂r
(r2Ω) + ρvz

∂Ω

∂z
=

1

r3

∂

∂r

(

ηr3∂Ω

∂r

)

+
∂

∂z

(

η
∂Ω

∂z

)

, (1.7)

vr
∂vz

∂r
+ vz

∂vz

∂z
= −∂ψ

∂z
− 1

ρ

∂P

∂z
+

1

ρ
Fz, (1.8)

1

r

∂

∂r
(rρvr) +

∂

∂z
(ρvz) = 0, (1.9)

where ψ(r, z) is the gravitational potential given by eq. (1.1). Fr and Fz are

respectively the r and z components of the divergence of the viscous stress tensor, i.e.

the viscous force, and are given by:

Fr =
2

r

∂

∂r

(

ηr
∂vr

∂r

)

− 2ηvr

r2
+
∂

∂z

[

η

(

∂vr

∂z
+
∂vz

∂r

)]

+
∂

∂r

[(

ξ − 2

3
η

)

(

~∇ · ~V
)

]

, (1.10)

Fz =
∂

∂z

(

2η
∂vz

∂z

)

+
1

r

∂

∂r

[

ηr

(

∂vr

∂z
+
∂vz

∂r

)]

+
∂

∂z

[(

ξ − 2

3
η

)

(

~∇ · ~V
)

]

. (1.11)

1.3. Constants of integration.

Vertical integration of eq. (1.9), with the assumption of a steady state, yields

an expression of the conservation of mass flow through cylinders. Usually this is

written as Ṁ = −2πrΣvr where Ṁ is the constant mass accretion rate through any

cylinder (and hence onto the star), Σ is the surface density in the disk, and vr is an

effective (i.e. density-weighted, height-averaged) radial velocity. However, since we

are interested in the z dependence of the radial velocity, vr, we choose to write this

important equation as

Ṁ = −2πr

∫ +∞

−∞

ρvr dz = constant, (1.12)
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where by convention Ṁ > 0 for accretion, i.e. for vr < 0. The quantity Ṁ will serve

as an integral of the motion for our accretion flow.

Another constant is obtained if, in the same spirit, we vertically integrate the

angular momentum equation (1.7). If we first multiply both sides by r3 and integrate

over z from −∞ to +∞, we obtain:

∫ +∞

−∞

(rρvr)
∂(r2Ω)

∂r
dz−

∫ +∞

−∞

r3Ω
∂(ρvz)

∂z
dz =

∂

∂r

[

r3

∫ +∞

−∞

η
∂Ω

∂r
dz

]

+r3η
∂Ω

∂z

∣

∣

∣

∣

+∞

−∞

(1.13)

where in deriving the second term on the left hand side we have performed an

integration by parts and set the boundary term to zero since ρ→ 0 as z → ±∞.

Using the equation of continuity (1.9), we can transform the entire left-hand side

into (∂/∂r)
∫ +∞

−∞
r3ρvrΩdz. The last boundary term involving ∂Ω/∂z also vanishes

because η = νρ→ 0 as |z| → ∞ and, finally, integration over r gives

J̇(r) − C = −2πr3

∫ +∞

−∞

η
∂Ω

∂r
dz, (1.14)

where −J̇(r) is the advection rate of angular momentum through a cylinder of radius

r, C is a constant of integration, and the right-hand side is the net torque exerted

by viscous interactions on the same cylinder. Note that this equation is exact for

any azimuthally symmetric, steady flow in which no mass is exchanged through the

surface at infinity (z = ±∞), and in which no angular momentum is carried radially

by radiation (Kluźniak 1987).

Since we consider only cases when the accretion rate is never zero, we can

introduce another constant j+ = C/Ṁ . The torque vanishes when this new constant

is equal to the height-averaged specific angular momentum j̄ (weighted with radial

momentum flux) or, correspondingly, when the height-averaged radial derivative of

the angular momentum (weighted with dynamic viscosity) vanishes. That is, we can
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rewrite eq. (1.14) as:

Ṁ(j̄ − j+) = −2πr3

[
∫ +∞

−∞

ηdz

]

dΩ

dr
, (1.15)

where J̇(r) = −2πr3
(

∫ +∞

−∞
ρvrΩdz

)

= Ṁ j̄, etc. If Ω is independent of z (i.e. constant

on cylinders), the usual form of eq. (1.15) is recovered by removing the bars. Thus

j+ can be interpreted as the specific angular momentum at the zero-torque radius,

rm. For this reason, we now define a new effective radius, r+, at which the Keplerian

specific angular momentum is equal to j+, i.e.
√
GM∗r+ = j+ = Ω(rm)r2

m. Note that

in general the maximum value of Ω is not equal to the corresponding Keplerian value,

Ω(rm) 6= Ωk(rm), and hence we do not expect r+ to be the same as rm.

1.4. The polytropic sound speed.

In the standard theory of thin accretion disks, the local sound speed becomes of

prime importance when modeling subsonic accretion. A clear advantage of employing

a barytropic equation of state is that it reduces the number of variables by one. A

polytropic equation of state also greatly simplifies calculation of the local sound speed,

i.e.

c2s =
dP

dρ
=

(

1 +
1

n

)

P

ρ
. (1.16)

With the above relation we can rewrite the pressure gradients in eqs. (1.6) & (1.8) in

terms of cs, giving the following elegant expressions:

1

ρ

∂P

∂r
= n

∂c2s
∂r

;
1

ρ

∂P

∂z
= n

∂c2s
∂z

. (1.17)

Now it is easy to show a basic result concerning a fluid in hydrostatic equilibrium

in both the radial and vertical directions. Here eqs. (1.6) & (1.8), without the inertial
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and viscous terms, reduce to a simple form involving only cs, Ω, and ψ:

−Ω2r = −∂ψ
∂r

− n
∂c2s
∂r

, (1.18)

0 = −∂ψ
∂z

− n
∂c2s
∂z

. (1.19)

Taking ∂/∂r of eq. (1.19) and ∂/∂z of eq. (1.18), we obtain the familiar result that

∂Ω/∂z=0, i.e. Ω is constant on cylinders for a polytrope in hydrostatic equilibrium

(cf. Tassoul 1978). Since in eq. (1.7) the velocities are proportional to the viscosity,

this already implies that in a barytropic disk of any thickness Ω is independent of

z to leading order in a Taylor expansion in the (small) viscosity parameter (except,

possibly, when the specific angular momentum is constant, j ≡ r2Ω = const.). We will

perform a systematic expansion in a different small parameter, the dimensionless disk

thickness, but for subsonic flow the same zeroth order result will be recovered.

1.5. Scaling the equations of motion.

At this point it is of paramount importance that we scale all relevant quantities by

their corresponding characteristic values. This will make the equations dimensionless

and allow us to weigh the relative significance of each term that appears. Following

Regev (1983) we scale all velocities (vz, vr, and cs) by the characteristic sound speed,

c̃s, all radial distances by some characteristic radius R̃ (e.g. R∗), and all vertical

distances by H̃ , the typical vertical scale height in the disk. We also represent Ω

in units of (GM∗/R̃
3)1/2 ≡ Ωk∗, the Keplerian angular velocity at the characteristic

radius, and ρ in terms of a typical value ρ̃. Similarly, we scale the pressure by

P̃ = ρ̃ c̃s
2, the kinematic viscosity by ν̃ = c̃sH̃ , and the dynamic and bulk viscosity

coefficient by ζ̃ = η̃ = ν̃ ρ̃.
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To apply a perturbative expansion technique to each equation we define an

expansion parameter, ǫ. Since we are interested in geometrically thin disks we choose

ǫ =
H̃

R̃
=

c̃s

Ωk∗R̃
≪ 1, (1.20)

where we have used c̃s = H̃Ωk∗, in agreement with the standard result from thin

disk theory that H ∼ cs/Ωk. In effect, ǫ is a parameter which measures the relative

“thinness” of the disk.

Denoting the scaled forms of vr and vz by u and v respectively, we obtain the

following set of non-dimensional equations:

ǫ2u
∂u

∂r
+ ǫv

∂u

∂z
− Ω2r = − 1

r2

[

1 + ǫ2
(z

r

)2
]

−3/2

− ǫ2
(

n
∂c2s
∂r

)

− ǫ3
(

2ηu

ρr2

)

+
ǫ3

ρr

∂

∂r

(

2ηr
∂u

∂r

)

+
ǫ

ρ

∂

∂z

(

η
∂u

∂z

)

+
ǫ2

ρ

∂

∂z

(

η
∂v

∂r

)

(1.21)

+
ǫ3

ρ

∂

∂r

[(

ξ − 2

3
η

)(

1

r

∂

∂r
(ru)

)]

+
ǫ2

ρ

∂

∂r

[(

ξ − 2

3
η

)

∂v

∂z

]

,

ǫ
ρu

r2

[

∂

∂r
(r2Ω)

]

+ ρv
∂Ω

∂z
= ǫ2

[

1

r3

∂

∂r

(

ηr3∂Ω

∂r

)]

+
∂

∂z

(

η
∂Ω

∂z

)

, (1.22)

ǫu
∂v

∂r
+ v

∂v

∂z
= − z

r3

[

1 + ǫ2
(z

r

)2
]

−3/2

− n
∂c2s
∂z

+
2

ρ

∂

∂z

(

η
∂v

∂z

)

+
ǫ2

ρr

∂

∂r

(

ηr
∂v

∂r

)

+
ǫ

ρ

∂

∂z

[(

ξ − 2

3
η

)(

1

r

∂

∂r
(ru)

)]

(1.23)

+
1

ρ

∂

∂z

[(

ξ − 2

3
η

)

∂v

∂z

]

+
ǫ

ρr

∂

∂r

(

ηr
∂u

∂z

)

,

ǫ

r

∂

∂r
(rρu) +

∂

∂z
(ρv) = 0, (1.24)

where we have used eq. (1.17) in rewriting the pressure gradients. Here eqs. (1.21),

(1.22), and (1.23) are the scaled radial, angular, and vertical momentum equations

respectively and eq. (1.24) is the scaled form of the continuity equation. Armed with
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the knowledge that ǫ≪ 1 for a thin disk, we make eqs. (1.21)-(1.24) the foundation of

our analysis and proceed to perturbatively expand all dynamical quantities in powers

of ǫ. We will find u ∼ ǫ, v ∼ ǫ2, i.e., vr = O(ǫ2)vφ and vz = O(ǫ3)vφ; therefore the

divergence terms ∇ · ~V in eq. (1.5) contribute at order not lower than ǫ3 to eqs. (1.6)

and (1.8)—this formally justifies their frequent neglect.

2. Solution for the vertical structure by perturbative expansion in ǫ.

2.1. Power series in ǫ = H̃/R̃.

We expand all variables in powers of ǫ and will evaluate eqs. (1.21)-(1.24) at

various orders. We let

(Ω/Ωk∗) = Ω0 + ǫΩ1 + ǫ2Ω2 + ..., (2.25)

u = (vr/c̃s) = u0 + ǫu1 + ǫ2u2 + ..., (2.26)

v = (vz/c̃s) = v0 + ǫv1 + ǫ2v2 + ..., (2.27)

as well as (cs/c̃s) = cs0 + ǫcs1 + ǫ2cs2+ ..., and (ρ/ρ̃) = ρ0 + ǫρ1 + ǫ2ρ2+ ..., with the

assumption that the dimensionless vertical scale height of the disk, h(r) = H(r)/H̃,

is of order unity, h ∼ O(1). All other variables like P , η, ν, & Ṁ can be expressed in

terms of these six fundamental quantities2. Our objective then is to calculate, order

by order in ǫ, the functional dependence of Ω, u, v, cs, ρ, and h on the coordinates r

and z alone.

2In reality only five of these are independent for a polytrope since eq. (1.16) gives

cs in terms of ρ (or vice-versa).
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Assumption ii) of § 1.1, regarding reflection symmetry about the (z = 0) midplane,

implies that physical quantities such as Ω, ρ, P , η, u, and cs are even functions of z,

while v is odd under reflections through the equatorial plane. When we expand an

even/odd function (e.g. Ω) in powers of ǫ≪ 1, we require each term in the expansion

(e.g. Ωi; i = 0, 1, 2,...) to be independently even/odd.

2.2. Viscosity-independent zeroth order results for the vertical structure.

Examination of eq. (1.21) at zeroth order immediately gives

Ω0 = r−3/2, (2.28)

i.e. Ω0 is equal to the Keplerian value at the midplane, Ωk ≡ vφk/r ≡
√

GM∗/r3

in conventional units. Though eq. (2.28) is consistent with the assumption of

a rotationally supported disk, it cannot satisfy the inner boundary condition of

Ω(r∗) = Ω∗ whenever the star rotates below its Keplerian value at the stellar radius,

nor the more general zero-torque boundary condition. Clearly, our perturbative

solution will be invalid in the limit r → r+. This is because implicit in the scaling of

§ 1.5 has been the assumption that ∂/∂r ∼ ǫ(∂/∂z). This approximation, however, is

known to be patently false in the inner transition region between the central star and

the Keplerian portion of the disk.

Eq. (1.24), the equation of continuity, fixes v at zeroth order to be zero everywhere,

v0 = 0. To see this more clearly, observe that ∂(ρ0v0)/∂z = 0 and so ρ0v0, the lowest

order vertical component of the mass flow, is a function of r only. However, since v is

odd with respect to the z coordinate, we know ρ0v0 = 0 for all points on the midplane

(z = 0) and, not being a function of z, this product must then vanish everywhere.

Clearly ρ0 6= 0 and thus v0 = 0 at all points in the rotationally supported disk.
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Moving on to first order in ǫ for the angular velocity, we see that because Ω is

even with respect to reflections through the midplane, the first order correction to the

angular velocity vanishes, Ω1 = 0. This result for Ω1 also has direct impact on the

fluid velocities, since eqs. (1.22) & (1.24) at order ǫ now give u0 = v1 = 0. Using this

result for u and v, we then find that the only surviving term of order ǫ in eq. (1.23)

involves the first order correction to the square of the sound speed, and thus c2s1 = 0,

and hence ρ1 = P1 = 0, which is consistent with symmetry arguments for these three

quantities. With this information, eq. (1.23) simply becomes the standard equation of

vertical hydrostatic equilibrium:

1

ρ0

∂P0

∂z
= n

∂(c2s0)

∂z
= − z

r3
. (2.29)

We can solve eq. (2.29), i.e. the vertical momentum equation up to corrections of

order ǫ2, and hence find cs0, ρ0, and P0. In the case of polytropic index n = 3/2 we

obtain the following relations (Hōshi, 1977):

cs0(r, z) =

√

h2 − z2

3r3
, (2.30)

ρ0(r, z) =

(

h2 − z2

5r3

)3/2

, (2.31)

P0(r, z) = ρ
5/3
0 =

(

h2 − z2

5r3

)5/2

. (2.32)

Eqs. (2.31)-(2.32) show that h(r) is now the height at which ρ = 0 (and hence P = 0),

implying that h is the true semi-thickness of the disk, though its functional dependence

on r is still undetermined. The surface density, Σ(r), can also be derived in terms of h

to lowest order in ǫ:

Σ0(r) =

∫ +h

−h

ρ0 dz =
3π

40
√

5

(

h4

r9/2

)

, (2.33)

where we have replaced the integration limits of ±∞ by ±h, since by eq. (2.31) the

polytropic disk terminates at z = ±h(r).
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It is now possible to put the integrated mass continuity equation (1.12) into

dimensionless form. Scaling as before and using the fact that to lowest non-vanishing

order in ǫ, u = ǫu1 + ... and ρ = ρ0 + ..., we can write eq. (1.12) to lowest order in ǫ:

ǫṁ = −r
∫ +h

−h

ρudz ∼ −ǫr
∫ +h

−h

ρ0u1dz, (2.34)

where ṁ = Ṁ/(2πρ̃c̃sH̃
2) ∼ O(1), is a dimensionless constant. For an adiabatic

index of n = 3/2, eq. (1.2) gives ρ̃ ∼ K−3/2c̃s
3 and, since H̃ ∼ c̃s/Ωk∗, we find

ṁ ∼ Ṁ/c̃s
6. Because ṁ is independent of ǫ for u1 6= 0, this implies that the unscaled

mass accretion rate must scale as Ṁ ∼ O(ǫ6), and hence Ṁ depends sensitively on the

relative “thinness” of the disk. As we shall soon see, the scaled eq. (2.34) is of prime

importance in determining the vertical structure and must therefore be included with

eqs. (1.21)-(1.24).

Up to this point, all the results obtained in this section, including eqs. (2.28) and

(2.30)-(2.33), are common to the outer regions (r >> r+) of any standard thin disk

with polytropic equation of state, for any viscosity prescription. However, all of these

expressions depend intrinsically on the vertical scale height, h(r), which cannot be

determined as an explicit function of r without a form for η(r, z) being first specified.

We cannot obtain solutions for the lowest non-vanishing orders in ǫ of vr and vz, nor

can we evaluate the first nonzero correction to Ω without specifying the viscosity

prescription.

2.3. Lowest-order results using the standard α-disk prescription.

Let us continue all calculations under the assumption that the viscosity is given

by the α-disk formulation. In view of the large uncertainty in modeling the kinematic

viscosity, authors in the past have generally neglected any z dependence for ν.
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Laboratory studies of turbulent jets undergoing free expansion lend some support to

this hypothesis (cf. Urpin 1984a, Monin & Yaglom 1965). However, we find this

to be unacceptable when solving for vr(r, z) and vz(r, z) in a polytropic disk as it

leads to divergent expressions at the surface of the disk, v(r,±h) → ∞ (Kita 1995).

We choose then to modify the alpha prescription by directly incorporating a form

of z dependence into the kinematic viscosity. But first, to better demonstrate that

the zeroth order results are hardly affected by the choice of the z dependence in the

kinematic viscosity, let us write down the result for the height of the (polytropic)

standard alpha disk, where ∂ν/∂z = 0 and

ν = αcsH. (2.35)

If cs taken to be the zeroth order equatorial sound speed, c̄s0(r) ≡ cs0(r, 0), one

obtains the following zeroth order expressions for the kinematic and dynamic viscosity

coefficients:

ν̄0(r) =
α√
3

(

h2

r3/2

)

, (2.36)

η̄0(r, z) = ν̄0ρ0 =
α

5
√

15

[

h2 (h2 − z2)
3/2

r6

]

. (2.37)

Notice that with this standard α-disk viscosity law, ν0 depends solely on r and,

therefore, η0 inherits its z dependence entirely from the density, ρ0(r, z), as given by

eq. (2.31).

Now the disk semi-thickness, h(r), can be determined as a function of radius. To

do this we observe that through lowest order in ǫ, eq. (1.15) reads:

ṁ(j0 − j+) = −r3

[
∫ +h

−h

η0dz

]

dΩ0

dr
, (2.38)

where ṁ is the scaled constant from eq. (2.34), j0 = r1/2 is the (zeroth order) Keplerian

specific angular momentum, and j+ = r
1/2
+ is the integration constant that arises from
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the no-torque boundary condition3 that accompanies eq. (1.15). Using eq. (2.37) for

η0 and integrating over z, we are left with the following simple algebraic equation for

the dimensionless disk height, h(r):

h(r)

r
= λ̄0

(

1 −
√

r+
r

)1/6

with λ̄0 =

[

ṁ

α

(

80

3π

√

5

3

)]1/6

. (2.39)

This result implies that h(r)/r → λ̄0 =constant as r → ∞, and that the disk remains

thin (i.e. H(r)/r ∼ ǫ) for all radii, provided, of course, that α is not too small. In

addition, we see that as r → r+, h → 0. This is a consequence of our using j0 and

dΩ0/dr in eq. (2.38), despite the requirement that dΩ/dr → 0 as j (not j0) → j+. As

we will see in Section 4, this is in fact a signal that our use of eq. (2.38) to determine

h is not appropriate in the neighborhood of r+.

It should be pointed out that the results we have so far obtained in this and

the previous subsection are well known (cf. Shakura & Sunyaev 1973, Hōshi 1977,

Paczyński 1991). Novel developments only become apparent when eqs. (1.21)-(1.24)

are solved to higher order. But, as already remarked, eqs. (2.36) and (2.37) cannot

be used to consistently extend the results obtained so far to higher order, it is first

necessary to slightly modify the viscosity prescription.

2.4. Lowest order results with height-dependent kinematic viscosity.

In the original paper by Shakura & Sunyaev (1973) the dominant component of

the viscous stress tensor is presumed to have the following form:

σrφ ∼ ηr(∂Ω/∂r) ∼ −αP. (2.40)

3If for some reason Ω0 was a function of both r and z we would need to use eq. (1.14).
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Since we know that in the outer disk r(∂Ω/∂r) ∼ −Ωk, we use eq. (2.40) as a guide to

make the following assumption regarding the z dependence of the viscosity:

ν(r, z) =
α

Ωk

[

c2s(r, z)

(1 + 1/n)

]

, (2.41)

consistent with η(r, z) ∼ αP (r, z)/Ωk where P ∼ ρc2s for a polytrope. Our new

expression for ν(r, z) reduces to the original formulation of eq. (2.35) in the midplane

of the disk (z = 0). We justify our choice of ν by noting that if the turbulent speed,

vturb, is bounded from above by the local sound speed, we must expect vturb to vary

considerably with height, since for a polytrope cs → 0 as z → ±h.

By using eqs. (2.30)-(2.32) & (2.41), we derive new forms for the zeroth order

kinematic and dynamic viscosity coefficients:

ν0(r, z) =
2α

15

[

h2 − z2

r3/2

]

, (2.42)

η0(r, z) = ν0(r, z)ρ0(r, z) =
2α

75
√

5

[

(h2 − z2)
5/2

r6

]

. (2.43)

Comparison of eq. (2.43) with eq. (2.37) shows that η0 is now one power higher in

(h2 − z2) and, as shown by Kita 1995, it is this difference that is the key to suppressing

the divergence of vr and vz at the disk surface.

We must first examine the impact that eqs. (2.42)-(2.43) may have on all other

previously derived quantities. Since none of the results in § 2.2 depend in any way on

ν or η, we know they are unaffected. The only change is in the value of the height of

the disk (but not its functional form), which is increased by a factor 31/4:

h(r)

r
= λ

(

1 −
√

r+
r

)1/6

with λ =

[

ṁ

α

(

16(5)3/2

π

)]1/6

≈ 1.96

(

ṁ

α

)1/6

. (2.44)
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2.5. Second order disk equations.

To explore the differential rotation with respect to z and the nature of the

velocity vector field in the accretion disk, we now consider only terms of O(ǫ2) in

eqs. (1.21)-(1.22). Bearing in mind that Ω0 = r−3/2, Ω1 = 0, and u0 = v0 = v1 = 0, we

discover the following equations for Ω2, u1, and v2:

−2Ω0Ω2r =
3

2

z2

r4
− 3

2

∂c2s0
∂r

+
1

ρ0

∂

∂z

(

η0
∂u1

∂z

)

, (2.45)

rρ0u1
d (r2Ω0)

dr
=

∂

∂r

(

η0r
3dΩ0

dr

)

+ r3 ∂

∂z

(

η0
∂Ω2

∂z

)

, (2.46)

1

r

∂

∂r
(rρ0u1) +

∂

∂z
(ρ0v2) = 0. (2.47)

Here, cs0, ρ0 and η0 are given by eqs. (2.30), (2.42) and (2.43), and h is known up to

the integration constant r+. Unfortunately, the two viscous terms at the end of eqs.

(2.45) & (2.46) complicate things by coupling the two equations together. To simplify

the equations, most authors assume a priori that Ω and vr in the outer disk are both

functions of only r. As we will show, this is justified only in the limit α << ǫ. We

prefer to keep all terms so that we can obtain a solution valid through order ǫ3 which

is consistent for all values of α.

2.6. Complete analytical solution for Ω2, u1, and v2.

To solve for Ω2 and u1, we will make the ansatz that

u1(r, z) = f1(r)(h2 − z2) + f2(r), where f1(r) and f2(r) are as yet undetermined

functions of r. A heuristic justification for this choice is that if the equations are

decoupled by neglecting the z derivatives, as in the olden approach common in the
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literature, the solution for the lowest order corrections to Keplerian motion are

Ω2|old(r)

Ω0

= −3

4

(

h

r

)2 [

1 − 2

3

(

d lnh

d ln r

)]

, (2.48)

and u1|old(r, z) = g1(r)(h
2 − z2) + g2(r), where

g1(r) =

(

11

5

)

α

r5/2
and g2(r) = −2α

(

h2

r5/2

)(

d lnh

d ln r

)

. (2.49)

Given the nature of the coupling term, η0(∂u1/∂z), in eq. (2.45), it is now possible to

formulate Ω2 in terms of f1(r) and f2(r), i.e.

Ω2(r, z) = Ω2|old(r) +
2

15
α

(

f1(r)

r

)

(h2 − 6z2). (2.50)

We then solve for f1(r) and f2(r) by substituting eq. (2.50) directly into the term

involving η0(∂Ω2/∂z) that appears in eq. (2.46). This results in the following forms for

the radial functions:

f1(r) =
g1(r)

(

1 + 64
25
α2
) and f2(r) =

(

32

15
α2

)(

g1(r)h2

1 + 64
25
α2

)

+ g2(r), (2.51)

where the functions g1(r) and g2(r) are defined by eq. (2.49). In this way we finally

obtain complete solutions for Ω2 and u1 in closed analytical form:

Ω2(r, z)

Ω0
=

(

h

r

)2 [

−3

4
+

1

2

(

d lnh

d ln r

)

+
2

15
α2Λ

(

1 − 6
z2

h2

)]

, (2.52)

u1(r, z) = −α
(

h2

r5/2

)[

−Λ

(

1 − z2

h2

)

− Λ

(

32α2

15

)

+ 2

(

d lnh

d ln r

)]

, (2.53)

where Λ is a constant that depends on the parameter α and is given by

Λ =
11

5

/(

1 +
64

25
α2

)

. (2.54)

Note that Ω2(r, z) exhibits differential rotation with respect to the vertical

coordinate; a feature which was also observed in the numerical solution by Kley &
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Lin (1992).This is because by including the viscous term of η0(∂u1/∂z) in the radial

momentum equation we are no longer solving for Ω under an assumption of strict

radial hydrostatic equilibrium.

We also observe that in the limit of α ≪ 1, so that α2 is a vanishingly small

quantity, eqs. (2.52)-(2.53) reduce identically to the solutions for Ω2 and u1 of the

equations of motion without the coupling terms. This suggests that neglecting the

viscous coupling terms is justified, so long as α is not too large, i.e. α ≤ ǫ. However,

when α ∼ 10−1 to 1, the effects of including the O(ǫ2) viscous terms becomes readily

apparent.

Note that u1(r, z), being quadratic in z, is an even function with respect to

reflections through the midplane (z = 0). It is also clear, upon reinstating the

appropriate scale factors, that vr/vφk ∼ H2/r2 ∼ ǫ2 in the outer disk, where our use

of eq. (2.44) for the disk surface is known to be valid. Since (d lnh/d ln r) diverges at

r+, we observe that limr→r+
u1(r, z) → −∞, i.e. we have not cured the well known

divergence of the Shakura–Sunyaev disk at the zero torque radius: as r → r+, h → 0,

ρ → 0 and, to preserve Ṁ =const, vr → ∞. However, for all radii r > r+, u is finite

everywhere and on the surface of the disk has the finite nonzero value given by

u1(r,±h) = −α
(

h2

r5/2

)[

2

(

d lnh

d ln r

)

− 352α2

3(25 + 64α2)

]

< 0. (2.55)

With the knowledge that u1 remains finite at the surface of the disk, we can now

pursue, with confidence, a solution for the lowest non-vanishing order of vz, i.e. v2, by

means of eq. (2.47), the equation of continuity up through second order in ǫ. If we

use eq. (2.31) for ρ0 and eq. (2.53) for u1, then after the requisite differentiation (with

respect to r) and integration (with respect to z), we can determine v2(r, z) up to an

unknown function of the disk radius. Yet since vz is an odd function of z and therefore

v2 = 0 in the equatorial plane for all r, this implies that the unknown function of r
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must be zero everywhere in the disk. In this manner, we find the following unique

solution for v2:

v2(r, z) = −α
(z

r

)

(

h2

r5/2

)

[

−Λ

(

1 − z2

h2

)

− 32α2Λ

15

(

d lnh

d ln r

)

+ 2

(

d lnh

d ln r

)2
]

(2.56)

where Λ is the same constant that appears in eq. (2.54).

We immediately notice several important features of the solution. First, as with

Ω2(r) and u1(r, z), limr→r+
v2(r, z) → −∞ because of its dependence on (d lnh/d ln r)2.

Secondly, we see that |vz/vr| ∼ H/r ∼ ǫ, as was expected for a standard thin disk in

vertical hydrostatic equilibrium. Finally, v2, like u1, is finite along the surface of the

disk for all r, i.e.

v2(r,±h) = ∓α
(

h3

r7/2

)

d lnh

d ln r

[

2

(

d lnh

d ln r

)

− 352α2

3(25 + 64α2)

]

. (2.57)

We now check our solutions to see if they concur with what we expect for a standard

thin disk. First, it is possible to show that eq. (2.53) satisfies eq. (2.34) for the

vertically-integrated mass flux, ṁ, even with the unexpected dependence on α2.

Second, a quick glance reveals that our new solutions for Ω2, u1, and v2 have the

necessary parities with respect to reflection through the (z = 0) midplane, i.e. even,

even, and odd, respectively. Third, if we replace the appropriate dimensional units for

each quantity, we see that (vφ − vφk)/vφk and vr/vφk are both of O(ǫ2), while vz/vφk

is O(ǫ3); all of which is entirely in complete agreement with our assumption that the

flow in the outer portions of the disk is predominantly Keplerian.

Finally, since h(r) is the semi-thickness of the disk, we must have vz/vr = ±(dh/dr)

for all points (r,±h) on the surface of the disk, as otherwise the geometrical disk

surface cannot be in a steady-state. Comparison of eqs. (2.55) & (2.57) shows that

this constraint is indeed satisfied for the lowest non-vanishing orders of vr and vz:

±v2(r,±h)

u1(r,±h)
=

(

h

r

)(

d lnh

d ln r

)

=
dh

dr
. (2.58)
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We stress that the new solutions for Ω2, u1, and v2 fully comply with the above list

of conditions for all possible values of α, provided that the disk remains geometrically

thin. The remaining properties of eqs. (2.52)-(2.57) for Ω2, u1, and v2 will be discussed

in detail in the following section.

3. Detailed discussion of analytical results.

In this section we examine the detailed properties of Ω2 (eq. [2.52]), and in §4

those of the remaining components of the vector field, u1, and v2, eqs. (2.53)-(2.57).

Since by assumption ii) (§§1.1, 2.1) the next order corrections vanish everywhere in

the disk, Ω3 = u2 = v3 = 0, our equations are valid up to corrections of O(z4/r4) for

Ω and vr, and O(z5/r5) for vz. In other words, the results we describe are valid in

the outer disk (r > 1.4r+) up to relative corrections of ǫ2, e.g. for H/R ≈ 0.1 the

expressions are valid to 1%.

In § 3.1, we study the nature of the z dependence of Ω2(r, z). In § 3.3 we also

discuss the interpretation of the apparent singularity in Ω2 at r = r+. In § 4, we look

at the velocity vector field in the outer disk, paying special attention to the sign of vr

and vz. We find that beyond a certain radius there is significant mass outflow near

the equatorial plane for a wide range of α’s. We carefully analyze all of its important

characteristics, including, in § 4.3, the fraction of the total mass flow carried out to

infinity by this phenomenon.
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3.1. Analysis of the lowest-order correction to Ω.

We found that the angular velocity of material in the disk, up to and including

terms of O(ǫ2) is given by

Ω = Ω0

{

1 + ǫ2
(

h

r

)2 [

−3

4
+

1

2

(

d lnh

d ln r

)

+
2

15
α2Λ

(

1 − 6
z2

h2

)]

}

. (3.59)

Eq. (3.59) for Ω is valid up to corrections of O(z4/r4) for a geometrically thin disk.

As pointed out in Ch. 2 Ω is clearly an even function of z and is Keplerian

up through first order in ǫ. In addition, since limr→∞(d lnh/d ln r) = 1 and

limr→∞(h/r) = λ from eq. (2.44), we find that

lim
r→∞

(

Ω

Ω0

− 1

)

= ǫ2λ2

[

−1

4
+

2

15
α2Λ

(

1 − 6
z2

h2

)]

. (3.60)

Note that this limit is negative for all z because 0 ≤ 2α2Λ/15 ≤ 0.082 over the range

0 ≤ α ≤ 1. Also observe that in the case of α ≪ 1, eq. (3.60) reduces to a negative

constant −ǫ2λ2/4. Thus, in the limit of inviscid flow (α → 0), Ω is constant on

cylinders (but subkeplerian for r >> r+). Finally, because h2(d lnh/d ln r) → ∞ as

r → r+, we know that Ω, as given by eq. (3.59), diverges at r = r+. It is on these last

two properties that we now focus our attention.

3.2. Differential rotation of the angular velocity with respect to z.

In this subsection, we discuss the z dependence of Ω. We define the quantity

∆Ω = [Ω(r,±H) − Ω(r, 0)] to be the difference between the angular velocity at the

surface of the disk and the angular velocity in the equatorial plane. From eq. (3.59),

we derive the following expression for the fractional difference:

(∆Ω/Ω0) = − ǫ2

Ω0
[Ω2(r,±h) − Ω2(r, 0)] = −ǫ2

(

h

r

)2(
4

5
α2Λ

)

. (3.61)
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Clearly, this fraction is negative for all radii. In Fig. 1, we plot log |∆Ω/Ω0|

in the disk with ǫ = 0.01 and ṁ = 1, for several values of the viscosity parameter:

α = 0.01, 0.1, and 1.0. We observe that in the limit of r ≫ r+, since limr→∞(h/r) = λ

(see eq. (2.39)), the fractional difference in Ω tends to a negative constant given by

limr→∞(∆Ω/Ω0) → −ǫ2(4/5)α2Λλ2 (dashed lines).

The amount by which the surfaces of constant Ω deviate from upright cylinders

is proportional to ǫ2 and therefore very small for a thin disk. The nearly constant

behavior for (∆Ω/Ω0) for r ≫ r+ is also interesting in its own right since it implies

that the total departure of the surfaces of constant Ω from the vertical does not

significantly decrease (or increase) as one goes further out in the disk. Examination of

eq. (3.61), also shows us that formally differential rotation vanishes as r → r+, since

h → 0 at r = r+; however, as Ω = Ω0 + ǫ2Ω2 diverges to +∞ at r = r+, this result of

∆Ω → 0 really has no physical meaning.

3.3. The singularity in Ω(r, z) in the inner disk.

In Fig. 2(a), we plot the second order correction to Ω (i.e. ǫ2Ω2) as a function of r

in the (z = 0) midplane for three different values of α. In Fig. 2(b), we plot H = ǫh(r)

for the same values α used in Fig. 2(a). For each choice of α, observe the singularity

in Ω2 at r+. Clearly, as the presumed O(ǫ2) correction provided by Ω2 grows without

bound near r = r+, the assumptions underlying our perturbative expansion are invalid

there.

The reason for the divergence, at r = r+, of Ω2 , vr and vz can be traced back

directly to the lowest order form of the vertically-integrated angular momentum
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equation (2.38):

ṁ(j0 − j+) = −r3

[
∫ +h

−h

η0dz

]

dΩ0

dr
. (3.62)

The left side of eq. (3.62) is proportional to (j0 − j+) = j0

(

1 −
√

r+/r
)

and as

such must vanish at r = r+. Since we are still assuming that Ω ≈ Ω0 in the

neighborhood of r+, if the right side is to also vanish there, then it is necessary for

the height-integrated viscosity,
∫ +h

−h
η0dz, to go to zero at r = r+. However, in the

α-disk prescription
∫ +h

−h
η0dz is proportional to (h/r)6, so this leads to the conclusion

that h→ 0 as r → r+ (Shakura & Sunyaev 1973). This functional form of h(r) causes

a singularity in its derivative at r+, i.e. limr→r+
(dh/dr) → +∞, and hence to a “cusp”
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in the disk surface.

The fault for all of this lies in the assumption that one can continue the

perturbative expansion into the transition region, near the zero-torque point, rmax,

where Ω reaches a maximum. While it is true that eq. (1.15) holds for all radii,

including r = r+, the same cannot be said for its lowest order expansion in ǫ, eq. (3.62),

which was used in the derivation of h(r) and hence all other physical quantities. Since

Ω is maximal at r = rmax, ∂Ω/∂r → 0 there, and eq. (1.15) is easily satisfied without

requiring that
∫ +∞

−∞
η0dz vanish anywhere in the disk. However, eq. (3.62), presumes

that Ω and j were approximately equal to their corresponding Keplerian values of Ω0
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and j0. This then forced the vertically-integrated viscosity (and hence h) to be zero at

the radius, r+; ultimately leading to the calculated singularities in Ω, vr and vz.

In the final analysis, we arrive at the conclusion that our perturbative expansion

in ǫ is not valid in the inner part of the disk, near r = r+, if we use the simple analytical

expression for h(r) which appears in eq. (2.39). However, as they are written in terms

of the disk surface, h(r), our solutions for Ω2, u1, and v2 in eqs. (2.52)-(2.56) are more

general than they first appear. Numerical work (Kita & Kluźniak 1997) shows that the

radius of convergence for our expansions can be extended well into the boundary layer

(r+ & r) and all singularities completely disappear if only a more realistic (numerical)

solution for h and (d lnh/d ln r) is used. In any event, our solutions for the vertical

structure are certainly valid in the outer regions of the disk for r & 2r+, where we are

fully justified in assuming Ω ≈ Ωk, and hence in using eq. (3.62) to determine h.

4. The velocity vector field.

In this section we will examine the behavior of the horizontal and vertical

components of the fluid velocity in the accretion disk. In particular, we will concern

ourselves with the sign of vr and vz, so that we can determine the direction of

the accretion flow. Note that we adopt here the convention that accompanied

eq. (1.12), i.e. Ṁ > 0 for accretion. Thus, if vr < 0 the radial component of

the flow is directed towards the central star. Likewise, vz < 0 for z > 0 signifies

flow towards the z = 0 midplane. Eqs. (2.53)-(2.57) for u1 and v2 directly give

the unscaled velocity components as functions of r and z to lowest order in ǫ,

i.e. vr(r, z) = ǫ2u1Ωk∗R̃ and vz(r, z) = ǫ3v2Ωk∗R̃.
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4.1. The sign of vr in the outer disk: outflow vs. inflow.

It is a result of our analysis, that at the surface of the accretion disk considered

here, the fluid always flows in the general direction of the central object. Indeed, since

2 > (32/15)Λα2 for all possible α’s in the range 0 ≤ α ≤ 1, then vr < 0 for all points

on the disk surface because the term in eq. (2.53) proportional to (1 − z2/h2) vanishes

at z = ±h. However, near the midplane beyond a certain radius, there may or may

not be outflow depending on the chosen value of the parameter of viscosity, α.

The radial velocity in the equatorial plane is:

vr(r, 0) = −αǫ2Ωk∗R̃

(

h2

r5/2

)[

2

(

d lnh

d ln r

)

− Λ

(

1 +
32

15
α2

)]

, (4.63)

where (d lnh/d ln r) can be obtained from eq. (2.44) and Ωk∗R̃ provides the physical

units. For small radii, r ∼ r+, evaluation of eq. (4.63) shows that the term involving

(d lnh/d ln r) dominates the bracketed expression and thus vr(r, 0) < 0, i.e. we have

inflow. However, for large radii, r ≫ r+, we see that since limr→∞(d lnh/d ln r) = 1,

the sign of vr(r, 0) depends ultimately on whether or not 2 ≥ Λ(1 + 32α2/15).

If, for example, α = 0, then Λ reduces to 11/5 and the bracketed portion of

eq. (4.63) is negative, so that vr(r, 0) > 0 for r ≫ r+; indicating the existence of

outflow in the equatorial plane far from the central accretor4. On the other extreme,

if α = 1 then Λ ≈ 0.618 and Λ[1 + 32α2/15] ≈ 1.94 < 2 and so vr(r, 0) < 0 for r ≫ r+,

signaling that the equatorial flow is directed inwards towards the central star for all

radii. A more precise analysis of eq. (4.63) allows us to determine the critical value

αcr =
√

15/32 ∼ 0.685 above which there is no backflow. This is a rather substantial

4To our knowledge, equatorial outflow in accretion disks was first discovered by

Urpin (1984).
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value more than ten times as large as the critical value estimated by Kley & Lin

(1992).

We now analyze quantitatively where the direction of the flow changes sign when

α < αcr. To this end we denote the stagnation radius, rstag, as the radius for which

vr = 0 in the equatorial plane. Eq. (4.63) with α < αcr allows us to calculate this

stagnation radius as a function of α:

rstag(α)

r+
=

[

1 + 6
(

Λ(1 + 32
15
α2) − 2

)]2

[

6
(

Λ(1 + 32
15
α2) − 2

)]2 . (4.64)

Observe that as α → αcr =
√

(15/32), Λ → 1 by eq. (2.54), and rstag → ∞, as

expected. This behavior is clearly visible in Fig 3, where we have plotted log (rstag/r+)

vs. α.

In the opposite limit α → 0, rstag/r+ → 121/36 ≈ 3.36. For α ≤ 10−1, we see

that rstag ≈ 3.5r+, this suggests that there is mass outflow in the midplane throughout

most of the disk for realistic values of α.

Of course, for α < αcr, the region of outflow is not restricted to the midplane

(z = 0) . Indeed, inspection of eq. (2.53) shows that vr(r, z) ≥ 0 for a range of z above

and below the equator for r ≥ rstag. We, therefore, define the “vertical flow surface,”

zvert(r, α), as the surface on which vr = 0, implying that the flow is moving vertically

there and hence the name. Clearly, zvert is well-defined for r ≥ rstag and intersects

the equatorial plane at r = rstag. Thus we can expect there to be outflow in the disk

for all points contained in the domain of r > rstag(α) and z < zvert(r, α), whenever

α ≤ αcr. For α ≥ αcr the surface of vertical flow disappears entirely.

Solving for zvert via eq. (2.53) for u1, we obtain

(

zvert(r, α)

h(r)

)

=

√

(

1 +
32

15
α2

)

− 2

Λ

(

d lnh

d ln r

)

. (4.65)
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In Fig. 4, we show log(Zvert/r+) (solid curves) and log(H/r+) (dashed curves) for

two different values5 of the parameter α: α = 0.1 & α = 0.6, where Zvert = ǫzvert and

H = ǫh. Observe that in Fig. 4, since α = 0.6 is closer to αcr ∼ 0.685, the outflow

region, bounded from above by zvert(r, α), is beginning to be strongly suppressed and

does not even start in the equatorial plane until r & 60r+. However, for α = 0.1 in

Fig. 4, the region of backflow is quite extensive and occupies nearly 30% of the disk

5H is also affected by the choice of α, since h ∝ (ṁ/α)1/6.
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for r ≥ 10r+.

4.2. The sign of vz and its impact on mass outflow.

We turn now our attention to the vertical velocity component, vz. A study

of eq. (2.56) reveals that ±vz < 0 for all points on the disk surface at z = ±h(r),

respectively, signifying that the flow there is directed towards the equatorial plane.

In addition, eq. (2.56) leads us to the conclusion that for α < αcr, besides being zero

for all radii in the (z = 0) midplane because of its odd parity, vz also vanishes on a
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new and different “horizontal flow surface”, zhor(r, α), on which the flow is directed

horizontally.

We determine the following functional form for this surface:

(

zhor(r, α)

h(r)

)

=

√

(

1 +
32α2

15
· d lnh

d ln r

)

− 2

Λ

(

d lnh

d ln r

)2

. (4.66)

Comparison of this result with eq. (4.65) reveals some definite similarities between

the two flow surfaces, including the property that zhor vanishes entirely in the limit

α → αcr. We also observe that zhor, the bounding surface across which vz changes

sign, is contained entirely within the vertical flow surface, zvert, at which vr = 0.

Furthermore, as r → ∞, zhor asymptotically approaches zvert from below for all values

of α. Thus for α < αcr, there is a nested volume contained within the domain of

backflow (vr > 0), within which the flow is directed away from the midplane,i.e.

vz/z > 0.

Figs. 5(a)-(b), illustrate this phenomenon for α = 0.1 and α = 0.6 respectively,

where we have zoomed in to that fraction of the disk involved with outflow. Observe

that at smaller radii, in both cases region A, the area within which vz/z > 0, is much

smaller than the corresponding region B within which vr > 0; though their boundaries

do converge to another at infinity, since limr→∞(d lnh/d ln r) → 1.

Eqs. (2.53)-(2.56), in conjunction with eqs. (4.65)-(4.66), also allow us to draw

some rather interesting conclusions regarding the flow geometry in the outer disk.

First, any material that enters region B must cross over into region A at some time

in the future. To see this, note that vz/z is still negative for all points between the

vertical flow surface and the horizontal flow surface (|zhor| < |z| < |zvert|) and thus

any fluid element in region B (where vr > 0), given enough time, must eventually

cross the inner horizontal flow surface, zhor, and into region A. It is clear that some of

the material in region C in Figs. 5(a)-(b) must not enter region B, instead a sizeable
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fraction of the flow that exists above zvert must continue on ahead of the stagnation

radius, into region D and onto the central star. This is, of course, the accreted flow

that comprises Ṁ .

To better visualize our previous remark, we call the reader’s attention to

Figs. 6(a)-(b), where we plot the direction of the velocity vector field, i.e. the unit

vectors formed from the components vr and vz, in the outer disk for two different

values of viscosity, both with α < αcr. As a reference, we have also overlaid the

vertical flow surface, zvert. In Fig. 6(c), we show the directional flow pattern for the

case of α > αcr (here α = 1), and we now find that only inflow persists throughout the
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entire disk.

Finally, note that there are no cells of meridional circulation in the disk. In the

region B flow is always directed towards the surface which bounds region A, while in

the region A flow is always directed away from the equator. The circulating pattern

of flow found by Kley & Lin (1992) close to the edges of their computational domain

must be an artifact of the boundary conditions they imposed. In fact, calculation of

the stream lines shows that material which enters region A can never intersect the

vz = 0 horizontal flow surface again, because vr > 0 and vz → 0 there. Coupled with

our original finding that any fluid which enters region B must also pass eventually into
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region A, this implies that material once in the backflow region B can never return to

the inflow portion C of the accretion disk. Therefore, if α < αcr, the backflow must

continue all the way out to “infinity,” where the disk terminates. All of this can be

easily verified by looking at Figs. 6(a)-(b).

4.3. The mass fraction of outflow relative to inflow.

The last question that we address relates to the backflow. What is the mass

outflow rate in comparison to the Ṁ accreted by the star? It is clear that the answer
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to this question must depend on the parameter α, since we know that there is no

backflow for α ≥ αcr ∼ 0.685. For this reason we now define Γ(r, α) to be the ratio of

the mass rate flowing outwards through a cylinder of radius r > rstag to the net mass

accretion rate, Ṁ .

To evaluate the functional form of Γ(r, α), we simply integrate the radial mass

flux, ρvr, over the surface of a cylinder with height 2zvert centered on the midplane.

Γ(r, α) =

∣

∣

∣

∣

∣

4πr
∫ zvert(r,α)

0
ρ0u1dz

4πr
∫ h(r)

0
ρ0u1dz

∣

∣

∣

∣

∣

=
1

ṁ

∣

∣

∣

∣

∣

2r

∫ zvert(r,α)

0

ρ0u1dz

∣

∣

∣

∣

∣

, (4.67)

where ṁ is the scaled mass accretion rate defined in eq. (2.34).
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Using eq. (4.65) for zvert(r, α), eq. (2.31) for ρ0, and eq. (2.53) for u1(r, z) we find

that the mass outflow fraction is

Γ(r, α) =

(

2αΛ

5
√

5ṁ

)(

h

r

)6
[

G1(γ
∗) +

(

(γ∗)2 − 1
)

G2(γ
∗)
]

(4.68)

where γ∗ = γ∗(r, α) = zvert/h and G1 and G2 are rather complicated functions of γ∗

given by:

G1(γ
∗) =

∫ γ∗

0

(

1 − z2

h2

)5/2
dz

h
=

5

16
sin−1(γ∗) +

5

16
γ∗
(

√

1 − (γ∗)2

)

+
5

24
γ∗
(

√

1 − (γ∗)2

)3

+
γ∗

6

(

√

1 − (γ∗)2

)5

, (4.69)
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G2(γ
∗) =

∫ γ∗

0

(

1 − z2

h2

)3/2
dz

h
=

3

8
sin−1(γ∗) +

3

8
γ∗
(

√

1 − (γ∗)2

)

+
1

4
γ∗
(

√

1 − (γ∗)2

)3

. (4.70)

The limit Γ∞(α) = limr→∞ Γ(r, α) is of particular interest, as it represents the ratio of

the net outflow to net inflow in the disk.

Analysis of eqs. (4.68)-(4.70) provides us with the following form for Γ∞:

Γ∞(α) =
32Λ

π

[

G1(γ
∗

∞
) +

(

(γ∗
∞

)2 − 1
)

G2(γ
∗

∞
)
]

, (4.71)

where the quantity γ∗
∞

is well defined only for α < αcr and given by

γ∗
∞

= lim
r→∞

γ∗(r, α) =

√

1 +
32

15
α2 − 2

Λ
. (4.72)

The resultant dependence on α for the mass outflow fraction as r → ∞ is plotted

in Fig. 7. We see that Γ∞(α) tends smoothly to zero as α → αcr. However, for a wide

range of α, the fraction of the mass flow that is contained in the outflow region, near

the midplane is quite significant: Γ∞(α) ∼ 0.4 for 0 ≤ α . 0.1 and 0.1 < Γ∞(α) . 0.35

for 0.1 < α < 0.5. Thus, for α ≤ 0.1, the total mass rate, Ṁtot = Ṁout + Ṁ , being fed

into the disk at the outer edge is ≈ 1.4Ṁ .

All in all, we are led to the startling conclusion (Urpin 1984) that, for small values

of α, there is backflow in the disk transporting fluid outwards to the outer boundary

of the accretion disk. This should have serious repercussions for mass transfer at the

outer edge of the disk.
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6. Final remarks.

By performing a systematic expansion (pioneered by Regev 1983) of the disk equations

of motion we were able to find a closed solution for the velocity field and the disk

structure, valid everywhere outside, say, 1.1 times the zero torque radius. We showed

how, for all but very large values of viscosity, the accretion flow turns around and

feeds a backflow (first discovered by Urpin in 1984) in the equatorial plane of the disk.

This backflow has now also been seen in a number of numerical simulations and must
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be considered a general feature of accretion in a geometrically thin disk, and possibly

also in quasi-spherical flows.

We note, that if the flow discussed here were advective, some of the gravitational

energy released by the flow close to the central gravitating body would have been

carried by the flow to larger radii before it is radiated. An urgent topic of investigation

should be whether solutions with backflows, similar to the one presented here, may be

present in an advection dominated flow. Should such solutions exist, conclusions (e.g.

Narayan 1996) that the apparent deficit of emission in the inner region of accretion

disks of some X-ray “novae” necessarily implies the presence of a space-time horizon

would have to be treated with caution.
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